Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter
نویسندگان
چکیده
Dissolved organic sulfur (DOS) is the largest pool of organic sulfur in the oceans, and as such it is an important component of the global sulfur cycle. DOS in the ocean is resistant against microbial degradation and turns over on a millennium time scale. However, sources and mechanisms behind its stability are largely unknown. Here, we hypothesize that in sulfate-reducing sediments sulfur is abiotically incorporated into dissolved organic matter (DOM) and released to the ocean. We exposed natural seawater and the filtrate of a plankton culture to sulfidic conditions. Already after 1-h at 20C, DOS concentrations had increased 4-fold in these experiments, and 14-fold after 4 weeks at 50C, indicating that organic matter does not need long residence times in natural sulfidic environments to be affected by sulfurization. Molecular analysis via ultrahigh-resolution mass spectrometry showed that sulfur was covalently and unselectively bound to DOM. Experimentally produced and natural DOS from sediments were highly similar on a molecular and structural level. By combining our data with published benthic DOC fluxes we estimate that 30–200 Tg DOS are annually transported from anaerobic and sulfate reducing sediments to the oceans. Uncertainties in this first speculative assessment are large. However, this first attempt illustrates that benthic DOS flux is potentially one order of magnitude larger than that via rivers indicating that this could balance the estimated global net removal of refractory DOS.
منابع مشابه
Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface
The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitiz...
متن کاملPhotosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface
In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The...
متن کاملElevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field
Fluids from the ultramafic-hosted Lost City hydrothermal field were analyzed for total dissolved organic carbon and dissolved organic acids. Formate (36–158 lmol/kg) and acetate (1–35 lmol/kg) concentrations are higher than in other fluids from unsedimented hydrothermal vents, and are a higher ratio of the total dissolved organic carbon than has been found in most marine geothermal systems. Iso...
متن کاملUnravelling New Processes at Interfaces: Photochemical Isoprene Production at the Sea Surface
Isoprene is an important reactive gas that is produced mainly in terrestrial ecosystems but is also produced in marine ecosystems. In the marine environment, isoprene is produced in the seawater by various biological processes. Here, we show that photosensitized reactions involving the sea-surface microlayer lead to the production of significant amounts of isoprene. It is suggested that H-abstr...
متن کاملFrom Fresh to Marine Waters: Characterization and Fate of Dissolved Organic Matter in the Lena River Delta Region, Siberia
Citation: Gonçalves-Araujo R, Stedmon CA, Heim B, Dubinenkov I, Kraberg A, Moiseev D and Bracher A (2015) From Fresh to Marine Waters: Characterization and Fate of Dissolved Organic Matter in the Lena River Delta Region, Siberia. Front. Mar. Sci. 2:108. doi: 10.3389/fmars.2015.00108 From Fresh to Marine Waters: Characterization and Fate of Dissolved Organic Matter in the Lena River Delta Region...
متن کامل